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Abstract

One of the most essential requirements to make use of the benefits of Cloud
computing is fully automated provisioning and deployment of applications
including all related resources. This leads to crucial cost reductions when
deploying and operating applications in the Cloud because manual processes
are slow, error-prone, and thus costly. Both Cloud providers and the open-
source community provide a huge variety of tools, APIs, domain-specific
languages, and reusable artifacts to implement deployment automation.
However, the meta-models behind these approaches are diverse. This diversity
makes it challenging to combine different approaches, avoiding vendor lock-in
and tooling lock-in. In this work we propose deployment aggregates as a
generic means to use and orchestrate different kinds of deployment approaches.
We define a generic meta-model and show its relation to existing meta-models
in the domain of deployment automation. Moreover, we discuss how existing
artifacts can be used as deployment aggregates as a result of transformation
and enrichment.
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1. Introduction

Cloud computing [1], [2] as an emerging paradigm is used
by a growing number of enterprises today. New applications are
developed as Cloud-native applications [3] and existing applica-
tions are migrated into the the Cloud [4], [5]. Not only public
Cloud offerings [2] such as Amazon Web Services (AWS)1 are
used to benefit from the advantages of Cloud computing such
as pay-per-use and on-demand self-service capabilities. A large
number of enterprises and other organizations support open-
source and standards-driven initiatives such as OpenStack [6]
to establish both private and hybrid Cloud [2] environments.

Cloud providers such as Amazon and Cloud frameworks
such as OpenStack provide cost-effective and fast ways to
deploy and run applications. However, as of today, there is
a large variety of deployment tools and techniques available.
They differ in various dimensions, most importantly in the meta-
models behind the different approaches. Some use application
stacks (e.g., AWS OpsWorks2 or Ubuntu Juju3) or infrastructure

1. Amazon Web Services (AWS): http://aws.amazon.com
2. AWS OpsWorks: http://aws.amazon.com/opsworks
3. Ubuntu Juju: http://juju.ubuntu.com

topologies (e.g., OpenStack Heat4), others use lists of scripts
(e.g., Chef run lists5) or even PaaS-centric application package
descriptions such as Cloud Foundry manifests6. This makes
it challenging to combine different approaches and especially
to orchestrate artifacts published by communities affiliated
with the different tools, techniques, and providers. However,
this is highly desirable because some communities share a
lot of reusable artifacts such as portable scripts or container
images as open-source software. Prominent examples are
Chef cookbooks7, Puppet modules8, Juju charms9, and Docker
images10.

In this work we analyze meta-models of existing deployment
automation approaches to identify their commonalities and
differences. Based on this analysis we propose a formalized
meta-model for any kind of deployment aggregates and
instances of them as a generic means to orchestrate different
kinds of artifacts and approaches. The key contributions of our
work can therefore be summarized as follows:

• We analyze and compare existing deployment automation
approaches for applications operated in the Cloud.

• We propose a formalized and generic meta-model based
on deployment aggregates to enable the orchestration of
different kinds of artifacts and approaches. We show how
this generic meta-model is related to existing meta-models,
models, and instances.

• We further discuss how existing artifacts can be trans-
formed and/or enriched to become deployment aggregates.
Furthermore, we present an algorithm to instantiate
deployment aggregates.

The remaining of this paper is structured as follows:
Section 2 presents the problem statement that motivates the
introduction of deployment aggregates. The meta-model for
deployment aggregates and related entities is formally defined
in Section 3. Based on that, Section 4 and 5 discuss how to

4. OpenStack Heat: http://wiki.openstack.org/wiki/Heat
5. Chef run lists: http://goo.gl/cIyROr
6. Cloud Foundry manifests: http://goo.gl/4UlDJk
7. Chef cookbooks: http://community.opscode.com/cookbooks
8. Puppet modules: http://forge.puppetlabs.com
9. Juju charms: http://jujucharms.com
10. Docker images: http://index.docker.io
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Figure 1. Chef meta-model

build deployment aggregates based on existing artifacts and
how to create instances of these. Finally, Section 6 and 7
present related work, conclusions, and future work.

2. Problem Statement

In the introduction (Section 1) we already mentioned a major
challenge: different communities publish a lot of reusable,
portable artifacts to automate the deployment of applications
operated in the Cloud. However, most of the approaches
affiliated with the artifacts are not compatible among each
other because their underlying meta-models differ. Thus, these
artifacts cannot be used and handled in a unified manner
because of different invocation mechanisms, state models,
parameter passing mechanisms, etc.

As an example, Figure 1 presents a simplified meta-model for
Chef [7]: recipes are deployment scripts packaged in cookbooks.
A manager entity such as a Chef server maintains the cookbooks
that are used. It further maintains a run list for each node, i.e.,
a physical or virtual machine. The run list points to an arbitrary
number of recipes that have to be executed on a particular node.
In contrast to Chef, Juju has a different meta-model that is
shown in Figure 2 in a simplified form: charms are packages of
scripts implementing the lifecycle (install, start, stop, uninstall)
of a certain middleware or application component. Multiple
charms can be orchestrated using a bundle, i.e., a bundle may
be used to model a complete application topology. The manager
entity such as the Juju command-line interface (CLI) maintains
the instances created based on existing charms. In contrast
to Chef, charms are not immediately hosted on single nodes.
They are instead hosted on an environment consisting of an
arbitrary number of nodes. Such an environment can be used
for transparent scaling, i.e., adding additional nodes if required
to scale out a particular component.

The differences in the underlying meta-models do not only
make it hard to use single artifacts in a unified manner as
discussed previously. It is especially challenging to combine
multiple approaches seamlessly to orchestrate different kinds
of artifacts such as Chef cookbooks, Juju charms, and Docker
images. Moreover, there are artifacts that are not immediately
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Figure 2. Juju meta-model

deployable or cannot be used directly to automate the deploy-
ment of applications in the Cloud. The reasons may be diverse:
(i) certain deployment logic is missing such as a script to
deploy a particular application component in a given stack.
(ii) Even if the artifact is complete and contains the whole
deployment logic, in some cases additional interpretations or
assumptions are required to deploy the artifact. This could,
for instance, apply to a complete application topology without
an overarching deployment plan attached. A major goal of
our work is to introduce a generic meta-model to be used
to tackle the issues discussed previously. The meta-model is
based on deployment aggregates. Such an aggregate can be any
kind of higher-level artifact (e.g., an overarching, orchestrating
deployment plan) or lower-level artifact (e.g., a script to deploy
a single application component on a VM).

Figure 3 outlines the relations between meta-models, models,
and instances following an advanced meta-modeling approach
introduced in [8] based on model-driven architectures. The
horizontal hierarchy represents the conventional meta-modeling
levels considering syntactic instance-of dependencies between
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meta-meta-models (H3), meta-models (H2), models (H1), and
instances (H0). The vertical hierarchy covering the horizontal
layers V0 and V1 represents an orthogonal semantic meta-
modeling hierarchy considering semantic instance-of depen-
dencies. A semantic instance-of dependency specifies which
model content of a semantic meta-model is inherited in which
way by a semantic instance. As shown in Figure 3 we do
not introduce an overarching meta-meta-model for existing
deployment automation meta-models such as the Juju meta-
model and Chef meta-model discussed previously. Instead,
we introduce a generic meta-model next to the existing
meta-models enabling unified representation, aggregation, and
orchestration of arbitrary artifacts of different existing meta-
models.

The semantic instance-of dependency on the horizontal layer
H1 in Figure 3 illustrates the impact of such a generic meta-
model. In particular, a generic deployment aggregate model
that is a conventional instance of the introduced generic meta-
model is suitable to specify required artifacts for deployment in
general, i.e., by specifying deployment aggregates. The model
content of the deployment aggregate model on the vertical layer
V0 can be inherited by a model on the adjacent vertical layer
V1. When inheriting the model content it is specialized. For
instance, the Juju topology model on V1 in Figure 3 inherits
the model content of the deployment aggregate model on V0

and specializes the model content considering the capabilities
the corresponding meta-model such as the Juju meta-model
provides. Consequently, the specialization enables the ability to
process the particular model in an appropriate environment. For
instance, a deployment aggregate specialized as a Juju topology
model may be processed in a Juju runtime environment. If a
meta-model does not provide appropriate capabilities to cover
all properties of a generic deployment aggregate some of the
model content may get lost or implicit while semantically
instantiating the generic deployment aggregate model.

In summary, a model on V1 is a view on the particular
generic deployment model using a specific (existing) meta-
model and inheriting the model content if possible, i.e., some
model content may be lost or implicit, but no model content is
added. Continuing this inheritance further vertical layers such as
V2 are possible holding views on the implemented deployment
models allowing to abstract specific model content in order to
focus on specific aspects of the model. For instance, a Chef
logs view may be introduced to analyze all logs produced
during a particular deployment.

Automated transformations from generic deployment models
(V0) to specialized models (V1) are mainly driven by the meta-
model mapping specified on the next higher horizontal layer.
Additionally, the semantic instance-of dependency specifies
which model content is inherited and which model content
is lost or made implicit. However, the semantic instance-of
dependency has low impact on the transformation from V0

to V1 because as much model content as possible should be
transferred to a specialized model. In contrast, the automated
transformation from an executable model to a view using the
same overarching meta-model is mainly driven by the semantic

instance-of dependency specifying which model content is
inherited by the view and which model content is removed,
e.g., for simplification or abstraction purposes. In the following
section, we provide a number of definitions and examples to
define our meta-model based on deployment aggregates.

3. Deployment Aggregate Fundamentals

This section defines four key entities that are used for further
discussions in this paper. These entities are:

• Deployment Aggregate (Definition 1)
• Deployment Aggregate Configuration (Definition 2)
• Deployment Aggregate Instance (Definition 3)
• Pre-Deployment Aggregate (Definition 4)
Moreover, we show how these entities are interrelated and

provide some concrete examples for each of them.
Definition 1 (Deployment Aggregate): A deployment aggre-

gate (DA) is an immediately deployable artifact or immediately
deployable composite of artifacts. We define it as a tuple
DA = (Impl,Deps) where Impl is the actual implementation
of this DA and Deps is a set of deployment aggregates on
which this DA depends.

If Deps = ∅ the DA does not have any dependencies and
thus consists of its own implementation only. In this case
we refer to such a DA as an atomic deployment aggregate.
Definition 1 states that an artifact or an artifact composite
has to be immediately deployable to be a DA: it means the
DA’s implementation, plus its dependencies, plus a proper
configuration for the DA can be used immediately without any
hidden conventions, assumptions, or additional dependencies
to create instances of the DA.

The type of a DA and what it represents can be diverse,
covering different Cloud service models [2] (IaaS, PaaS,
database-as-a-service, etc.). In the following we list a few
examples:

1) A script implemented in Ruby using the fog11 library to
provision and manage AWS EC212 machines. Beside the
fog library this DA depends on another DA providing a
Ruby runtime environment.

2) A workflow implemented in BPEL [9] to provision a
cluster of EC2 machines. The Ruby script described in (1)
can be reused as a dependency for this DA. However, its
functionality need to be exposed as a Web service based
on WSDL to be able to orchestrate different provisioning
and management actions in BPEL.

3) A Chef cookbook to install and configure an Apache Web
server on a VM. This DA depends on a Chef runtime
environment such as Chef solo [7] and on an operating
system that is compatible with the cookbook (e.g., a
Linux-based operating system).

4) An AWS CloudFormation template to deploy the whole
stack for running WordPress13 including the PHP runtime

11. fog: http://fog.io
12. Amazon Web Services EC2: http://aws.amazon.com/ec2
13. WordPress: http://www.wordpress.org



environment, the Apache Web server, and the MySQL
database server on AWS’ infrastructure. This DA depends
on another DA (e.g., a script) that uses the command-line
interface for CloudFormation to deploy a stack described
by a CloudFormation template.

5) A Cloud Foundry manifest to deploy a chat application
implemented using Node.js with a chat log database in
the background based on MongoDB. This DA depends
on another DA providing a Cloud Foundry platform
with support for Node.js and MongoDB such as IBM
BlueMix14. Alternatively, a DA could instantiate a new
instance of the platform using the open-source Cloud
Foundry framework based on existing IaaS offerings (e.g.,
Amazon Web Services) to satisfy the dependency.

6) An SQL database dump containing data to be deployed to
AWS RDS15. In terms of dependencies, two requirements
need to be fulfilled by one or more further DAs: (i) the
API of AWS RDS needs to be accessed to manage
RDS instances; (ii) corresponding database drivers (e.g.,
PostgreSQL or MySQL) to push the data to a particular
RDS instance.

7) A composite of DAs such as the ones described previ-
ously to deploy a Web application consisting of multiple
components hosted in different environments. This is
how different Cloud deployment models [2] such as
private Cloud, public Cloud, or hybrid Cloud can be
targeted and combined. For instance, some components
of the Web application may run on AWS’ public Cloud
infrastructure, others may run on an OpenStack-based
on-premise datacenter.

Technically, DA dependencies can either be packaged with
the DA to make a DA truly self-contained. Alternatively, DA
dependencies can be expressed using references to resources
that can be retrieved from the Web or other sources.

Definition 2 (Deployment Aggregate Configuration): A de-
ployment aggregate configuration (DAC) is an arbitrary data
structure, e.g., rendered in JSON or XML. It is used in
combination with a DA to create a deployment aggregate
instance (Definition 3).

Definition 3 (Deployment Aggregate Instance):
A deployment aggregate instance (DAI) is a
concrete instance of a DA. We define it as a tuple
DAI = (DA,DAC,Host, InstanceDeps,Runs) where
DA is the deployment aggregate itself, DAC is the deployment
aggregate configuration, Host is the place where this DAI
is hosted on, InstanceDeps is a set of DAIs on which this
DAI depend, and Runs is a set of invocations that have been
triggered for this DAI.

The DAC, for instance, may define where exactly the DAI is
hosted on. In case of an IaaS-based host such as AWS EC2 the
number and types of VM instances may be defined (e.g., two
’m1.small’ instances or one ’m1.large’ instance). In case of a

14. IBM BlueMix: http://ace.ng.bluemix.net
15. Amazon Web Services RDS: http://aws.amazon.com/rds

PaaS-based host such as Heroku16 the number and types of
units may be specified (e.g., two ’1X dynos’ or one ’2X dyno’).
However, a Host cannot only be a VM (IaaS) or a platform
(PaaS). It could also be a container managed by Docker17, a
database instance, or any other kind of environment that can
host a DAI.

Each run of a DAI can be represented as a tuple Run =
(Conf,Res) where Conf is the configuration and Res is the
result of this run. The configuration is the input, whereas the
result represents the output of a run. The run’s configuration
overrides the given DAC of a DAI. If Conf = undefined
then the DAC is used as configuration: Conf := DAC. The
following listing outlines a simple example for a run of a
provisioning script for EC2 machines, rendered in JSON:

{
"config": {
"action": "provisionNewVM",
"awsAccessKeyId": "...",
"awsSecretAccessKey": "...",
"region": "us-east-1",
"image": "ami-7000f019",
"flavor": "m1.small"
},
"result": {
"sshUser": "ubuntu",
"sshKey": "...",
"publicDns": "ec2-...-amazonaws.com"
}

}

Definition 4 (Pre-Deployment Aggregate): A pre-deploy-
ment aggregate (PDA) is an artifact or composite of
artifacts that needs to be transformed and/or enriched using
corresponding functions to make it an immediately deployable
DA: ∀ PDA ∃ function f : f(PDA) = DA

Different approaches established in the state of the art may
be used to create PDAs. The Topology and Orchestration
Specification for Cloud Applications (TOSCA) [10] is an
emerging standard to define the structure of a Cloud application
as a graph-based topology model consisting of nodes (VMs,
middleware, application components, etc.) and relationships
between nodes (’hosted on’ relations, dependencies, database
connections, etc.). Other approaches to create PDAs are
Enterprise Topology Graphs [11], Blueprints [12], UML
deployment diagrams [13], or any viable, i.e., eventually
deployable topology described using a graph-based topology
notation [14].

Some PDAs need to be enriched to make DAs out of them.
For instance, an arbitrary topology model with all or some plans
or scripts missing for the deployment of its different parts needs
to be enriched with corresponding artifacts to become a DA or
a refined PDA. This may include executables to provision VMs,
provision database instances, install and configure middleware
as well as application components, etc.

16. Heroku: http://www.heroku.com
17. Docker: http://www.docker.io
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Figure 4. Transformation of application topology (PDA)
into deployment topology (DA)

An example for a PDA requiring a transformation is a
topology model specifying the structure of a Cloud application
stack with some abstractions in it. Figure 4 outlines such
a transformation. The original application topology defines
the topological structure of a simple Web application. It
includes all artifacts required to provision and deploy all
parts of the application stack. However, this topology model
cannot be deployed immediately without some assumptions or
interpretation. For instance, according to the original topology
the Web application with its install-app.sh installation script is
hosted on a Web server. However, this does not imply that the
install-app.sh script is executed on the Web server. Actually,
the script has to be executed on the underlying VM, but not
before the Web server has been installed on it using the Apache
cookbook. This is why we need to transform the topology to
explicitly express these deployment facts, e.g., in the form of
a deployment topology as shown in Figure 4.

Beside the dependencies shown in the deployment topology
in Figure 4 there are additional dependencies. For instance, a
Chef runtime environment is required to execute cookbooks.
These dependencies may be satisfied by embedding or refer-
encing additional DAs. However, transforming a PDA into a
deployment topology as discussed previously is just one of
many options to generate a DA. Another alternative would be
to generate a monolithic DA such as a script or a workflow to
perform the deployment.

Figure 5 summarizes the generic meta-model for DAs and
related entities such as DAIs, DACs, and PDAs defined in this
section. In particular, we saw that PDAs cannot be deployed
immediately because transformation and/or enrichment is
required to make them immediately deployable DAs. Based
on that, in the following Section 4 we discuss how to process
PDAs accordingly.
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Figure 5. Proposed generic meta-model for deployment
aggregates and related entities

4. Processing Pre-Deployment Aggregates

The process of transforming and/or enriching PDAs
to become immediately deployable DAs can be either
(semi-)automatic or manual. In case of a semi-automatic
or manual process there may be a decision support system
involved. Alternatively, a DA can be generated or manually
created from scratch without creating a PDA at first. However,
in this section we focus on processing PDAs toward DAs.

In the previous section we discussed Figure 4 showing
a sample transformation of an application topology (PDA)
into a deployment topology (DA). Figure 6 shows another
example consisting of two enrichment steps. The original
PDA gets enriched by several artifacts such as scripts and
cookbooks to provision and deploy all the parts involved in
the application topology. Then, the resulting PDA gets further
enriched by an overarching artifact to make it eventually a
DA. Such an overarching artifact could be a deployment plan
that orchestrates the scripts and cookbooks, or it could be a
deployment engine that interprets the topology and triggers
corresponding actions to provision and deploy all parts of the
topology.

Let’s assume P is the space of all PDAs and D is the
space of all DAs: functions can be defined and implemented
such as enrich1 : P → P to enrich a TOSCA topology
model with corresponding scripts or transform1 : P → D to
transform an application topology into a deployment topology.
These functions are used to refine PDAs or to create DAs
based on them using enrichment and/or transformation. Related
works [15], [16] present approaches to automatically generate
deployment plans for given application topology models. These
approaches could be implemented as functions to enrich PDAs.

Such functions can be chained to consolidate multiple trans-
formation and enrichment steps. For instance, the two functions
mentioned before can be chained to create a function that
directly transforms a TOSCA topology model into a deployment
topology: tosca2DeplTopology = enrich1 ◦ transform1.
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Figure 6. Example for multi-step processing of pre-deployment aggregates

5. Instantiating Deployment Aggregates

Based on the definitions given in Section 3, let’s assume D
is the space of all DAs, C is the space of all DACs, H is the
space of all hosts, and I is the space of all DAIs: the function
instantiate : D×C×H → I assigns each combination of DA,
DAC, and host a concrete instance (DAI). As a precondition
for an algorithm implementing the instantiate function we
assume that there are no cyclic dependencies between DAs.

Definition 5 (DA’s Dependency Graph): A deployment ag-
gregate’s dependency graph (DG) is a directed graph repre-
senting all dependencies Deps (Definition 1) recursively for
a given DA. We define it as a graph DGDA = (N,E) where
DA is the deployment aggregate itself, N is a set of nodes ni

representing DAs, and E is a set of directed edges. Each edge
(ni, nj) represents a dependency between two DAs, meaning
DA ni depends on DA nj .

Constraint 1 (No cyclic dependencies among DAs):
∀ DA : DGDA must be acyclic.

A recursive algorithm to implement the instantiate function
is presented in Figure 7. It is a depth-first search (DFS)
algorithm. As defined by Constraint 1, cyclic dependencies
between DAs are strictly forbidden. Otherwise the algorithm
may end up in infinite recursion.

Figure 8 shows an example for an acyclic dependency
graph for the Web application deployer DA, which itself
is implemented as Shell script. It depends on several other
DAs that are implemented using a variety of deployment
tools and scripting languages such as Chef, Juju, and Ruby.
Figure 9 shows a sample DAI that results from executing the
instantiate algorithm for the Web application deployer DA.

Because the instantiate algorithm shown in Figure 7 is a
DFS algorithm, its worst-case time complexity is linear based
on the total number of dependencies: O(n), n = |EDGDA

|.
This is because we iterate over all dependencies recursively,
instantiate them, and finally instantiate the DA itself.

6. Related Work

In the previous Sections 3, 4, and 5 we defined and ex-
plained our generic meta-model for the domain of deployment

1: function INSTANTIATE(DA,DAC,Host)
2:
3: DAI ← new Deployment Aggregate Instance
4:
5: DAI.DA← DA
6: DAI.DAC ← DAC
7: DAI.Host← Host
8:
9: DAI.InstanceDeps← new Set

10: DAI.Runs← new Set
11:
12: for all DepDA in DA.Deps do
13: DepDAC ← DAC.getDepConf(DepDA)
14: DepHost← DAC.getDepHost(DepDA)
15:
16: DepDAI ← INSTANTIATE(DepDA,
17: DepDAC,DepHost)
18:
19: DAI.InstanceDeps.add(DepDAI)
20: end for
21:
22: Access← Host.connect(DAC)
23: Exec← DA.Impl.execute(DAC,Access)
24:
25: Result← Exec.getResult(Access)
26:
27: Host.disconnect()
28:
29: InitialRun← new DAI Run
30: InitialRun.Conf ← DAC
31: InitialRun.Res← Result
32:
33: DAI.Runs.add(InitialRun)
34:
35: return DAI
36:
37: end function

Figure 7. Algorithm to create DAIs
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Figure 8. Sample DA: Web App. Deployer

Web	  
Applica+on	  
Deployer	  

DAC	  

Init.
Run	  

MySQL	  
Database	  
Cluster	  

DAC	  

Init.
Run	  

Apache	  Web	  
Server	  

DAC	  

Init.
Run	  

EC2	  VM	  

Apache	  PHP	  
Module	  

DAC	  

Init.
Run	  

AWS	  EC2	  
Provisioning	  

DAC	  

Init.
Run	  

Chef	  
RunEme	  

DAC	  

Init.
Run	  

Juju	  
Environment	  

DAC	  

Init.
Run	  

Ruby	  
RunEme	  

DAC	  

Init.
Run	  

Ruby	  
RunEme	  

DAC	  

Init.
Run	  

Local	  VM	  EC2	  VMs	  

depends	  on	  

hosted	  
on	  

Figure 9. Sample DAI based on Web App. Deployer DA

automation based on deployment aggregates. Regarding the
generic meta-modeling approach there is related work in the
field of service science: [17] proposes a unified meta-model
for executing service compositions. Moreover, choreographies
of Web services are formalized in [18], providing a generic
meta-model for such choreographies.

TOSCA [19] is an emerging higher-level standard in the field
of Cloud management and operations. A major goal of TOSCA
is to provide a higher-level abstraction based on application
topologies and thus can be used to integrate different lower-level
deployment automation approaches [20], [21] such as Chef
or Puppet. Consequently, TOSCA’s XML schema-based meta-
model may be used as a generic meta-model for the deployment
domain. However, especially pure TOSCA topology models
in the sense of an application topology are not immediately
deployable because they may require some interpretation or

conventions. Thus, we need to transform and/or enrich them
before deployment as shown in Figure 4 and 6.

Furthermore, TOSCA is completely built on the idea of
creating topology models and management plans implemented
as workflows to operate an application in an automated manner.
However, deployment automation could also be implemented
as a hierarchical collection of scripts, as a monolithic compiled
program, or even as a holistic declarative configuration. The
meta-model for deployment aggregates provides a generic
and recursive way to use and orchestrate very different kinds
artifacts in a unified manner.

PaaS frameworks such as Cloud Foundry18 and Stratos19

implicitly define a generic meta-model to be used to run
and deploy different kinds of middleware and application
components in a developer-centric manner. However, certain
plugins may have to be developed to extend the framework,
more or less following a strict programming model and using
given APIs to integrate with a particular framework. The
concept of deployment aggregates tries to minimize such
restrictions and framework dependencies as much as possible.

In the field of multi-cloud applications there are related ap-
proaches dealing with unified APIs and management interfaces.
Some of them stay on the level of IaaS [22], others are more
holistic [23], [24] including the PaaS level, too. However, they
are more focused on providing some kind of a central manager
exposing such APIs to deploy and manage middleware and
application components in a unified manner. Such a manager
could be used as an intermediary DA to provide an environment
as DAI to enable the execution of other DAs depending on
such APIs.

7. Conclusions and Future Work

In this paper we introduced a generic meta-model centered
around deployment aggregates to implement automated de-
ployment of applications. We showed how different kinds of
existing deployment automation approaches and artifacts can be
used and orchestrated using deployment aggregates. Moreover,
we presented concepts how existing, not yet deployable
artifacts (pre-deployment aggregates) can be transformed and/or
enriched to make deployment aggregates out of them. Finally,
an algorithm was shown to instantiate deployment aggregates.

In terms of future work we plan to implement a holistic
framework to manage deployment aggregates and instances of
these. Based on this framework we will conduct a thorough
evaluation to demonstrate the seamless orchestration and unified
handling of deployment aggregates based on existing artifacts
of different kinds. Furthermore, we plan to create a meta-
model for deployment topologies as a generic technical means
to build deployment aggregates. Technically, such deployment
topologies may be rendered using XML, YAML, JSON, etc.

18. Cloud Foundry: http://cloudfoundry.org
19. Apache Stratos: http://stratos.incubator.apache.org



References

[1] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in
Photogrammetric Week ’09. Wichmann Verlag, 2009.

[2] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology, 2011.

[3] B. Wilder, Cloud Architecture Patterns. O’Reilly Media, Inc., 2012.
[4] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S. Dustdar, “Moving

Applications to the Cloud: An Approach Based on Application Model
Enrichment,” International Journal of Cooperative Information Systems,
vol. 20, no. 3, p. 307, 2011.

[5] T. Binz, F. Leymann, and D. Schumm, “CMotion: A Framework
for Migration of Applications into and between Clouds,” in 2011
IEEE International Conference on Service-Oriented Computing and
Applications. IEEE, 2011.

[6] K. Pepple, Deploying OpenStack. O’Reilly Media, 2011.
[7] S. Nelson-Smith, Test-Driven Infrastructure with Chef. O’Reilly Media,

Inc., 2013.
[8] K. Görlach and F. Leymann, “Orthogonal Meta-Modeling,” Journal of

Systems Integration, vol. 5, no. 2, pp. 3–17, 2014.
[9] OASIS, “Web Services Business Process Execution Language (BPEL)

Version 2.0,” 2007.
[10] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud Services

Using TOSCA,” Internet Computing, IEEE, vol. 16, no. 3, pp. 80–85,
2012.

[11] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “Formal-
izing the Cloud through Enterprise Topology Graphs,” in Proceedings
of 2012 IEEE International Conference on Cloud Computing. IEEE
Computer Society Conference Publishing Services, 2012.

[12] M. Papazoglou and W. van den Heuvel, “Blueprinting the Cloud,” Internet
Computing, IEEE, vol. 15, no. 6, pp. 74–79, 2011.

[13] OMG, “Unified Modeling Language (UML), Version 2.4.1,” 2011.
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